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Abstract 
 
Simulations of bipedal walking showed that the evolution of stable gaits can be 
greatly facilitated by harnessing design solutions inspired by those of biological 
organisms.  
 Three such areas are addressed in this paper: a) the use of passive dynamics such 
as free-swinging lower legs, knee caps and springy ankles, b) proportional derivative 
controllers (or their variants) as actuators, and c) a modular, specifically coupled 
neural controller architecture. 
 It is shown that an appropriate implementation of these components greatly 
improves the speed of evolution – stable straight line walking is typically achieved in 
substantially less than 100 generations. Moreover, compared to earlier experiments, 
the quality of the solutions arrived at is more satisfying with respect to their 
resemblance to human body dynamics during walking. 
 
 
1  Introduction  
 
Morpho-functional machines, whether embodied or simulated, typically achieve 
mobility through wheels or articulated limbs. While controllers for the former are 
relatively trivial, locomotion based on legs is a much harder task to accomplish. Here, 
recurrent neural networks have become a popular control architecture, usually paired 
with artificial evolution [1] to optimise the parameter settings [2]. 
 Several researchers have used this combination successfully to control 
multi-legged morpho-functional machines in simulation [3, 4, 5] or embodied [6, 7, 8, 
9]. More recently, the applicability of this approach was demonstrated to be 
extendable to the control of bipedal walking [10, 11]. 
 Bipedal walking is a particularly difficult behaviour  to control due to the 
inherent instability of two-legged locomotion. While an earlier evolutionary approach 
did produce stable walking cycles in simulation [11], only a small proportion 
(approximately 10%) of evolutionary runs resulted in successful controllers. 
Moreover, the evolved walking styles often did not closely resemble those found in 
natural bipeds, such as humans or birds. 
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 It is argued here that these shortcomings can be overcome by implementing 
design solutions taken from biology. In particular these are: 
 

a) Passive body dynamics 
b) More responsive virtual muscle models 
c) Modular, coupled network architectures 

 
 It will be shown that the appropriate use of the above components leads to faster 
evolution and qualitatively more satisfying solutions. 
 
 This paper is structured as follows: a short background of bipedal walking 
(Section 2) will be followed by a description of the implementation used in this 
research (Section 3). Subsequently, the key components will be addressed in more 
detail in Section 4.1 (passive dynamics), 4.2 (muscle models) and 4.3 (network 
architecture). Sections 5 and 6 discuss the results of applying this improved 
architecture, with Section 7 concluding this work. 
 
 
2  Bipedal Morpho-functional Machines - Background 
  
Bipedal morpho-functional machines and robots have been subject to intensive 
research for several decades due to their potentially wide range of applications (e.g. as 
service robots) and because of their appeal as anthropomorphic machines. 
Two-legged robots with varying complexity have been produced and controlled by a 
number of researchers [e.g. 12, 13, 14, 15, 16, 17, 18]. Control is typically based on 
state-machines to produce the rhythmic leg movements, and additional controllers to 
maintain lateral and sagittal stability. Despite advances in computing power and 
mechanical implementation, even the best robots only achieve walking speeds that 
are considerably lower than those of a comparable human. Moreover, walking 
stability has yet to reach that of humans (see [19] for an overview of current bipedal 
walking machines). 
 The advent of readily available computing power has resulted in an increased 
trend to implement bipedal  

 
 
 
 
 

 

 
 
 
 
 
 
 
 

  
Fig. 1. Honda P3  Fig.2. Motion sequence of biped controlled 

by an evolved RNN [10] 



 
 
MfMs in simulation. The attraction of this approach lies in the easy construction of a 
physically simulated machine, as compared to building one. Thus, different bodies 
and controller architectures can be tried and tested with relative ease. Pratt [20] has 
used this approach to construct a simulated bipedal walker modelled on MIT’s M2 
robot. Walking cycles are produced by state machines and stabilised by 
supplementary algorithms that control lateral foot placement and ankle torque. By 
manually tuning the corresponding parameters, this simulated robot was able to 
achieve average speeds of 0.8 m/s.  
Reil [10] used a different approach to control a bipedal walker in simulation. The 
required cyclic actuator activities were not determined by a state machine, but 
produced by a biologically inspired central pattern generator (CPG), implemented as 
a recurrent neural net. Artificial evolution was used to optimise the controller’s 
parameters. It was found that the genetic algorithm was capable of fine-tuning [21] 
the muscle activities in such a way that the walking cycles were stable without 
additional control algorithms for balance [11]. However, only moderate walking 
speeds of approximately 0.5 m/s could be achieved. 
 
 
3  Implementation 
 
The implementation used in this research is built upon the approach taken in [11], but 
incorporates several advances in the controller, actuator and body design. 
 
 
3.1 Body 
 
The biped is simulated using Mathengine’s Dynamics Toolkit 0.0.5 [22], which 
includes the necessary functionality for rigid-body-dynamics and collision detection, 
and allows for significantly faster-than-real-time evaluation of controllers (Figure 3). 
Currently, the biped has 8 degrees of freedoms (DOF): hip-roll, hip-pitch, knee-pitch, 
ankle-pitch. Of these, only the two hip joints are actively actuated (see Section 4.1). 
The feet are implemented as two spheres each, representing the heel and toe sections. 
 

 

 

 

 
 
 
 
 
 
 

Fig. 3. Implementation of biped used in this research, fully rendered (left) 
and wire-frame (right). 



 

Body Implementation Dimensions 
HEEL    SPHERE 0.08m radius 
TOE     SPHERE 0.08m radius 
CALF    CUBOID 0.125m x 0.540m x 0.125m 
THIGH   CUBOID 0.175m x 0.500m x 0.175m 
HIP     SPHERE 0.125m radius 
PELVIS CUBOID 0.500m x 0.500m x 0.600m 
 
Table 1. Physical Parameters of the Biped (density: 0.5kg/l for pelvis) and 1kg/l 
for other bodies) 

3.2 Genetic Algorithm 
 
The GA used to optimise the controller architecture is modified from [10].  
 The parameters to be evolved are synapse weights and node properties and are 
encoded as real numbers in a linear chromosome. The mutation rate is chosen so as to 
cause an average of one substitution per individual. No crossover operator is applied 
[11]. 
 Rank based selection is used on a population of 100 individuals, with a fittest 
fraction of 0.5 (which is equivalent to culling the bottom half of the population and 
replacing it with a copy of the top half [23]). 
 Individuals are selected on the basis of the fitness function depicted in Figure 4. 
The overall fitness criterion is the distance of the hindmost foot to the origin of the 
walk (d). The hindmost foot is chosen as a reference point to penalise individuals that 
take only one great stride. 
 The fitness function decision tree of Figure 4 serves several functions. Most 
importantly, it enforces the early abortion of unpromising runs (t < te) to speed up 
evolution. An evaluation is terminated early if the controller has reached a point 
attractor (∆a = 0), and hence the body has ceased to move. In addition, a run is 
aborted if the position of the centre of mass (CoM) falls below a pre-defined height (h 
< β). This penalises falling down as well as grotesque movements [10]. Finally, 
individuals that fall over without previously moving (d < α) are assigned a fitness of 
0. 

Fig. 4. Fitness function decision tree. 
t: time, te: maximum time, h: CoM height, β: CoM height threshold, α: distance 

threshold, ∆a: RNN activation change, d: distance hindmost ankle / origin 

 
Fig. 5. Passive walker, based on 
McGeer’s original design, Ruina Lab. 

 
 
 
 
 
 
 
 
 



 
 
A weak assisting controller is used at the beginning of each evolutionary run in order 
to stabilise the trunk section laterally and sagittally. The controller serves to initially 
guide evolution towards the production of rhythmic step cycles, and is subsequently 
removed (see Section 5). 
 
 
4 Exploiting Biological Design Solutions 
 
Our implementation of the biped makes use of three distinctive classes of design 
solutions, with the purpose of facilitating the evolution of walking. These are detailed 
in the following subsections. 
 
 
4.1 Passive Dynamics 
 
The term passive dynamics describe the dynamic behaviour of a physical system 
(such as a biped) that is solely due to its mechanic properties.  
 Several workers have demonstrated that anthropomorphic walking machines 
can exhibit stable, human-like walking on a slope with no actuation and no control 
[24, 25, 26]. This has led researchers to postulate that bipedal walking “might be 
largely understood as a passive mechanical process” [27]. The reliance of slopes, and 
therefore gravity, as a power source for passive walkers indicates that this cannot be 
the full story – after all, biological bipeds are powered by muscles. However, the 
findings do suggest that natural selection may have tuned the morphology of 
biological bodies so as to significantly facilitate their control by the nervous system. 
Using a simulation of their M2 robot, Pratt & Pratt [28] have demonstrated that the 
exploitation of natural dynamics can indeed be coupled with controlled actuation of 
virtual muscles. 
 The biped presented here features mechanical components which serve to 
implement important passive dynamics as identified by earlier research projects [24, 
25, 27, 28]. In particular, these are passively swinging lower legs, knee caps and 
springy ankles. 
 
 
4.1.1 Passive Swing Legs 
 
The leg movements characteristic of anthropomorphic walking are caused by a 
combination of actuation and passive swinging. In particular, in normally paced 
walking actuation seems to be largely limited to the hip joints, with the lower legs 
following passively. Given this, the control task for straight line walking can be 
simplified to two degrees of freedom (the hip joints) in an accordingly designed 
bipedal morpho-functional machine. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6. Passive swing leg, one walking cycle. 
 
 
The dynamic of a passive swing leg in a single walking cycle are depicted in Figure 6. 
Note that the passive lower leg is accelerated only by gravity and the pulling 
movement of the upper leg. In addition to simplifying the control (because the knee 
joint is not actively actuated), this implementation markedly increases the realism of 
the walking pattern produced. 
 
 
4.1.2 Knee Cap 
 
A passively swinging lower leg requires a mechanism to provide a rapid stop to the 
movement at full extension. An appropriately controlled and timed actuator could in 
principle achieve this functionality. In biological bipeds however, nature has opted for 
a cheaper, mechanical implementation in the form of a knee cap. 
While a physical knee cap can be implemented relatively simply in an embodied 
robot, in simulation it is often cheaper to use a soft angular limit to the knee joint, 
which is the solution employed in the present study.  
 
 
4.1.3 Compliant Ankle 
 
The two feet represent the only physical interface between a walking biped and its 
environment, and therefore play an important role in its locomotion. In particular, by 
acting analogously to a damped spring, the ankles serve to allow a smooth roll of the 
foot over the floor while simultaneously storing energy. At toe lift-off, this energy is 
released and used to initiate the next stride. Again, no active neural control is required 
for this task. Our current biped includes this functionality in the form of a damped 
torsional spring in each of the ankle joints. 
 
 
4.2 Actuators 
 
While higher level control centres, such as spinal central pattern generators or the 



neocortex, are often viewed as dominating the control of human and animal 
locomotion, a great deal of co-ordination is governed by simple lower level 
mechanisms [29, 30, 31]. Of particular importance in this respect are spinal reflexes, 
and of these the stretch reflex [32] is the most prominent example. 
Skeletal muscles are extensively supplied with a variety of receptors. One type, 
muscle spindles, respond to stretch of muscle fibres and relay this information via 1a 
afferent neurones to the spinal alpha motor neurones. These in turn innervate the 
muscle concerned, as well as its antagonist. In the case of the former, neurone activity 
enhances muscle contraction; in the case of the latter, it inhibits it. 
 This set-up acts as a negative feedback controller. Its function is to counteract 
passive stretching of a muscle by actively increasing its degree of contraction.  
 In engineering terms, the stretch reflex is roughly equivalent to a proportional 
integral derivative (PID) controller. Applied to actuator control of MfMs, it can be 
expressed as follows: 
 

 T: torque force; coefficients: kP: proportional, kD: 
derivative, kI: integral θd: desired angle, θ: actual angle  

 
An actuator implementation of this type requires as input the desired angle 
(equivalent to the desired length of a biological muscle). The necessary force to reach 
the ‘sweet spot’ is calculated by the actuator itself. That is, motor commands from 
higher control centres (such as a CPG) to actuators do not represent forces, but 
desired kinematic parameters like relative joint angles. 
 The use of PID controllers brings about several advantages. They provide 
control at a low level, as they automatically reduce any discrepancy between the 
actual and the desired angle. As a consequence, the tendency of limbs, for example, to 
buckle under the body mass is counteracted directly by the actuator, a task which 
would otherwise have to be accomplished by the neural controller. In addition, by 
tuning the allowed desired angle (θd) range, upper and lower caps to limb movement 

 if the neural controller has to explicitly 
can be easily achieved. This is not possible
specify forces rather than desired angles. 

 Finally, a joint-actuator set-up that acts as one entity rather than implementing 
single muscles (agonists, synergists, antagonists) greatly reduces the degrees of 
freedom of the system (and of the neural controller). In vertebrates, the set of 
biological muscles around a joint act in a comparably integrated manner (Lloyd’s 
myotatic unit [34]). 
 
 However, in practice, the use of PID controllers can be problematic. Firstly, 
changes in the control environment (e.g. load on the body) require dynamic parameter 
modulation of the PID. Because this modulation must itself be controlled, more 
DOFs are added to the system. Secondly, PID controllers can bring about numerical 
instabilities. For these reasons, we opted for an alternative actuator type called force 
limited velocity constraints (FLVCs), which provide a similar functionality to PIDs, 
but without the aforementioned shortcomings. 



 FLVCs allow the user to specify a relative velocity profile at which to approach 
the desired angle between two bodies. The simulation’s constraint solver then 
calculates the forces required to satisfy this request. An external modulation of 
controller parameters is therefore unnecessary, even if the control environment 
changes.  
 
 
4.3 Controller Architecture 
 
The rhythmic activities required for vertebrate locomotion are known to be produced 
by dedicated neural structures in the spine, called central pattern generators (CPGs) 
[35]. While these circuits have been located in various animals, they remain elusive in 
humans (but see Bussel et al. [36] for indirect evidence). 
 Despite this lack of experimental evidence, recent theoretical studies have shed 
light on the CPG architecture necessary to produce the gait patterns displayed by 
quadrupeds and bipeds [37]. In essence, the proposed structure consists of two 
bi-directionally coupled chains of identical oscillators (Figure 7). The number of the 
latter is twice that of the appendages to be actuated (i.e. 8 for quadrupeds, 4 for 
bipeds). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Neural CPG architecture used in this 
research. Circled nodes are motor neurons. 
See text for details. 

 Fig. 7. Schematic illustration of 
CPG architecture proposed by 
Golubitsky [37]. The CPG for a 
biped is shown. Circles indicate 
oscillators. Arrows denote coupling 
directions  

 
In the present work, this general set-up is translated into a neural implementation, as 
depicted in Figure 8. 
 
 
 
 
 
 
 



 
 
 
 Each sub-oscillator is represented by a fully connected recurrent neural net with 
six nodes1. Each of these is connected to the laterally adjacent oscillator via 
symmetrical weights (bi-directional coupling), with each neurone synapsing with its 
equivalent in the opposite network. Connections to the sagittal neighbours are 
asymmetric, i.e. each neurone is connected to its equivalent in the next oscillator, but 
no connections exist the other way. 
 The neurone model is that used in [7, 10], and includes a bias and time 
parameter. Their allowed ranges, as well as those of the synapse weights, are detailed 
in [10]. Two nodes are designated motor neurones - their output is used for left and 
right sagittal hip actuation (Figure 8). 
  
 The use of identical oscillators as well as only two sets of coupling weights 
(lateral and sagittal) limits the search space to a total of 60 parameters (36 weights + 
12 neurone parameters + 6 lateral weights + 6 sagittal weights). 
 
 
5 Results 
 
Evolutionary runs resulted in realistic straight line walking in a small number of 
generations (Figure 9). 
 
 
 
 
 
 
 
 
  

 Fig. 9. Two representative evolutionary runs leading to successful straight-line walking. 
Assisting controller active.  

 
 

                                                        

Because initial runs were performed with a weak stabilising assisting controller 
(see Section 3.2), populations of stable walkers were picked at random from a series 
of evolutionary runs and re-evolved with the assisting controller switched off. It was 
found that these individuals reliably evolved to attain the previously achieved fitness 
(Figure 10). Control experiments with de novo evolution and de-activated ancillary 
controllers did not result in successful runs (Figure 11). 

 
1 Six nodes were chosen as these were found to produce the highest degree of spontaneous 
cyclic activity. 



 
 
 
 
 
 
  
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 Fig. 10. Incremental evolution. Runs are evolved with ancillary controllers until the walker 

reaches 20 m. The ancillary controller is then switched off and the population is re-evolved. 
Two runs (top, bottom) are shown.

 
 
 
 

 
Fig. 11. Evolutionary run without active ancillary controller. The milestone fitness 
of 20 m is not reached.  

 
 
 
 
 
 
 
 
 
 
 
 Evolved walkers predominantly displayed a standard walking gait which made 
full use of the passive dynamics of the body, such as free swinging legs (Figure 12). 
However, a small number of evolutionary runs resulted in small-step gaits, with 
almost no lower leg swing. The average walking speed of walkers was 0.8 m/s, with 
maximum speeds of approximately 1.2 m realised by several individuals.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Frame shots of an evolved walker. One gait cycle is shown. 
 

 
 
 
Analysis of neural activity and resulting body dynamics showed that relatively simple 
periodic controller outputs sufficed to produce stable walking (Figure 13). The 
periods of neural output and body dynamics (e.g. hip angles) were locked (Figure 13 
and 14). Existing sub-oscillations in the controller output (as exemplified in Figure 
13) were not reflected in the overall body dynamics (this is because the lag between 
actual and desired angles acts like a low pass filter, smoothing out small oscillations in 
the desired angle trace). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 Fig. 13. Time series of neural output (desired left and right hip angles in 

radians) and resulting body dynamics (actual left and right hip angles in 
radians). Note that the small sub-oscillation in the neural output is not 
reflected in the body dynamics. (Data taken from individual depicted in 
Figure 12.) 

 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 14. Left hip angle plotted vs. left hip neural output. After an 

initial settling phase, both periods become locked to each other.  
 
Periodic gaits were always preceded by a short settling phase, in which the neural 
outputs and body dynamics differed from the subsequently established pattern (Figure 
15). Visual analysis showed that this stage was used to initialise the body position for 
the walking gait.  
 
 

  

 
 
 
 
 
 
 
 
 
 
 Fig. 15. Attractor plots of left/right hip desired angles (left) and left/right hip actual angles 

(right). Note that both trajectories exhibit an initial settling phase at the onset of walking. 
Angles are shown in radians.  

 
 
 
An initial settling phase can be observed even more prominently in the resulting 
passive body dynamics. Figure 17 shows the left knee / left hip angle trajectory of the 
walker displayed in Figure 13. Note that it takes several steps until the knee reaches is 
final full swing cycle. 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 16. Left hip angle (actuated) vs. left knee angle (passive). 

The stable attractor cycle is reached after several steps. Angles 
are shown in radians.  
 

 
 
 
 
6 Discussion 
 
The fitness graphs of Figure 10 show that the length of evolutionary runs required to 
produce straight line walking is very short. Moreover, the large majority of runs result 
in successful controllers. The current implementation therefore exceeds the success 
rate of our earlier bipeds [10], where only a small fraction (about 10 percent) of 
evolutionary runs resulted in stable walking – and of these the required length was 
typically in excess of 100 generations. While it has to be taken into account that the 
two approaches used different physics engines (MathEngine SDK 1.0.5 vs. 
MathEngine Dynamics Toolkit 0.0.5), and a quantitative comparison is hence 
problematic, the improved implementation presented here can nevertheless clearly be 
considered superior in terms of evolutionary efficiency. 
 
 Another area of improvement is the perceived realism of the body dynamics, 
when compared with actual human walking. While bipeds produced in our earlier 
experiments [10] often displayed unnatural walking styles, the gaits found in the 
current implementation appear consistently more humanoid. To further confirm this 
notion, body dynamics data produced by our bipeds will have to be compared to 
human motion capture data. 
 Preliminary analysis suggests that in particular the free swinging legs constrain 
the dynamics of walking in a favourable manner. Walking styles that did not make 
use of a full lower leg swing (and hence the knee cap) were less stable than those 
which did employ it – similarly humans tend to fully extend their lower legs, 



irrespective of the walking speed.  
 
 Experiments on simulated bipedal walking with combined active and passive 
actuation have recently been carried out elsewhere [20]. We believe, however, that the 
neuro-evolutionary method presented here confers crucial advantages. Firstly, it is 
fully automated, which brings about increased flexibility with respect to the body 
implementation. Different mass distributions, body dimensions, and actuator or joint 
types can be tested for their usefulness (e.g. in terms of their passive dynamics) 
simply by evolving suitable controllers (which is a matter of minutes on a modern 
PC). Unlike other approaches, no manual re-tuning of controller parameters is 
necessary. 
 Moreover, the CPG architecture used in this research allows the integration of 
sensory (in particular proprioceptive) feedback and tonic input into the controller. 
While this has yet to be implemented for the biped presented here, previous work by 
Taga [38] on planar bipedal walking has demonstrated that appropriate modulation of 
CPG activity increases the robustness of walking gaits on uneven terrain. We expect 
to achieve similarly positive results of a corresponding set-up in our 3D-physical 
simulation. 
 
 
7 Conclusion 
 
It was demonstrated that the evolution of straight line bipedal walking on even terrain 
is facilitated by the employment of appropriate passive dynamics, actuator types and 
controller architectures. In combination with incremental evolution, the length of 
evolutionary runs could be reduced to substantially less than 100 generations. 
 Walking gaits produced using this method are of an anthropomorphic nature – a 
result which is particularly due to the use of passive dynamics. 
 While the present paper addresses the evolution of straight line bipedal walking 
on even terrain, future implementations will incorporate sensory (in particular 
proprioceptive) information. The opinion is held that the neuro-evolutionary approach 
used here provides an ideal basis for these extensions. 
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