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Abstract— We describe an evolutionary approach to the
control problem of bipedal walking. Using a full rigid-body
simulation of a biped, it was possible to evolve recurrent
neural networks that controlled stable straight-line walking
on a planar surface. No proprioceptive information was nec-
essary to achieve this task. Furthermore, simple sensory
input to locate a sound source was integrated to achieve di-
rectional walking. To our knowledge, this is the first work
that demonstrates the application of evolutionary optimiza-
tion to three-dimensional, physically simulated biped loco-
motion.

Keywords— evolutionary robotics, bipedal walking, evolu-
tionary algorithms, recurrent neural networks, physics

I. INTRODUCTION

Bipedal walking is a difficult task due to its intrinsic in-
stability, and developing successful controller architectures
for this mode of locomotion has proved substantially more
difficult than for other types of walking [1].

There is considerable interest in this matter, from dis-
ciplines as diverse as robotics, computer graphics, virtual
reality, and biology. However, previous approaches have
been based on conventional control strategies. As will be
discussed shortly, this brings about considerable compli-
cations and limitations. In addition, past work has been
constrained by only limited available means to simulate the
physics of the body to be controlled, thus making it either
necessary to build robots or resort to simplified models in
simulation.

Given the inherent difficulties in designing stable con-
trollers for natural looking bipedal walking, it was decided
to investigate the use of evolutionary robotics techniques
[2] in developing recurrent dynamical neural-network-based
controllers for the task. This paper describes successful
experiments in evolving controllers for a realistically simu-
lated biped. The structure of the paper is as follows:

We first review previous work on controller architectures
for bipedal walking. These are subsequently contrasted
with the approach taken here: evolutionary robotics. Sec-
tion II describes the implementation of both the biped and
the neural controller, as well as the evolutionary algorithm
used in this research. As shown in the subsequent results
section, this combination succeeded in producing natural
looking bipedal walking. Section IV addresses the integra-
tion of sensory input and describes a corresponding, suc-
cessful experiment. The article closes with a discussion of
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the research presented.

A. Related Work

The major thrust of research on bipedal walking has
come from computer graphics and robotics. In the case
of the former, animation techniques such as motion cap-
ture [3] have come to dominate the area. Motion capture
essentially implies filming the desired human behaviour,
and using the obtained data to animate a computer gener-
ated equivalent. The advantage of this approach is clearly
the ability to immediately generate realistic bipedal motion
dynamics. However, Laszlo et al. [4] make it clear that
“motion capture does not provide us with sufficient under-
standing to create more general walking motions, especially
when conditions are unpredictable, when new motions need
to be generated, or when dealing with non-human charac-
ters.”

These shortcomings can be overcome by a second ap-
proach, which is based on a semi-physical representation
of the biped and a controller to create movement patterns.
With techniques such as inverse kinematics and inverse dy-
namics, virtual limbs can be placed at the desired positions,
and the required forces are computed accordingly.

Several workers [4][5] have followed this approach to cre-
ate computer animations of humans. The equations of mo-
tion are either produced specifically for the model to be
animated or are generated with available packages [5][6].
Typically, a finite state machine determines the control ac-
tions (with cyclic states such as heel contact, toe contact,
unloading or flight [5][4][7]), and special forms of limit cycle
control may be applied to achieve the necessary stability
[4]. The animated end results of these efforts closely re-
semble natural motion patterns, but may nevertheless fail
to convince the human eye in specifically designed “motion
Turing tests” [5] (these tests confront human subjects with
computer generated and real-life animations, and ask them
to discern between the two). This lack of realism is a direct
consequence of the controller architecture employed; a state
machine does not readily produce the fluctuations typical
of real locomotion. More significantly, it cannot easily be
extended to integrate sensory input. Furthermore, the cre-
ation of state machines can be a cumbersome process, as
states have to be identified, implemented and fine tuned by
hand for each type of gait to be modelled [5].

Bipedal locomotion in robots is subject to the physical
laws of the natural world, and hence short cuts like mo-
tion capture are not available. Bipedal robots with varying



complexities have been produced and controlled by several
researchers [8]-[16]. As with computer graphics models, the
corresponding controller architectures are typically based
on state machines with special algorithms added on top to
provide the necessary stability. Most recently, Pratt et al.
[14] have used Virtual Model Controllers for planar bipedal
robots. Here, virtual mechanical components are attached
to the robot and exert real actuator torques or forces. For
example, a virtual dog track bunny is used to maintain a
desired velocity in a planar biped robot. A state machine
changes the virtual component connections or parameters
at each state transition. Together with a set of simple rules
for, e.g., height, pitch, and speed stabilisation, this allows
a more intuitive development of stable controller architec-
tures and somewhat eases the problem of mathematical
tractability encountered in previous attempts [13]. In ad-
dition to testing and optimising control strategies on the
real robot, Pratt and Pratt [17] have used a rigid-body
simulation [6] to create a realistic model of a biped. This
allowed efficient experimentation with the robot’s natural
dynamics (such as passively swinging legs).

In summary, with few exceptions, such as Miller [18], who
utilizes reinforcement learning for training a neural net,
previous approaches to bipedal walking have been based
on engineering techniques like state machines and conven-
tional control theory. As remarked on earlier, this causes a
number of problems: a) mathematical tractability, b) man-
ual optimisation, c¢) limited extendability, and d) limited
biological plausibility. It is argued here that the evolution-
ary robotics approach presented below has the potential to
overcome the first three constraints by improving on the
last one, biological plausibility.

B. FEwvolutionary Robotics

Evolutionary robotics was introduced as an alternative
to the hand design of robot controllers, especially for au-
tonomous robots acting in uncertain and noisy domains
[19][20]. Evolutionary algorithms are used to search spaces
of controllers (and potentially body and sensor layouts
too) described by a set of variables encoded on the arti-
ficial genotype. The fitness function is usually task-based,
that is, high scores are achieved by controllers that enable
the robot to perform the desired task well. These con-
trollers are nearly always in the form of some kind of ar-
tificial neural network (ANN). The job of the evolutionary
search algorithm ranges from optimizing the parameters of
a fixed-architecture ANN [21][22][23] to exploring complex
network spaces where the architecture and many proper-
ties of the nodes and connections are under evolutionary
control [24][25].

There have been many successful applications of evo-
lutionary robotics to date, ranging from simple reactive
behaviours in wheeled robots with IR proximity sensors
[22][26], through visually guided behaviours in simple
wheeled robots [27]]28], to fairly complex non-reactive be-
haviours in simple wheeled robots [29], and a variety of
locomotion controllers for 6- and 8-legged robots [30]- [34].
For far more detailed reviews of the field see [37][2].
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Fig. 1. MathEngine implementation of the biped. Note that although
two bodies are used to implement the knee, only one body is
necessary.

To date evolutionary robotics techniques have not been
applied to a task as dynamically unstable as controlling
bipedal locomotion.! It is this inherent instability (gen-
erally two-legged walkers will fall over without continu-
ous active control) that provides severe challenges to the
hand design of such controllers, especially if smooth nat-
ural walking is required. However, given the success of
evolved locomotion controllers for relatively stable hexa-
pod and octopod robots [30]-[34], it was deemed appropri-
ate to investigate the use of such techniques for developing
bipedal locomotion controllers. As will be seen later in this
paper, evolutionary robotics methods were indeed success-
ful in finding stable controllers for bipedal walking.

II. IMPLEMENTATION
A. The Biped
A.1 MathEngine Bodies and Joints

Unlike previous, embodied approaches, the agent to be
controlled here is modelled using the rigid body dynamics
simulation SDK of MathEngine™™- This allows the evalua-
tions to be run significantly faster than real time [38], and
thus greatly increases the efliciency of the evolutionary ap-
proach.

MathEngine’s Fast Dynamics Toolkit was developed to
overcome the two most pressing problems in the simulation
of physics: complexity and speed. Programmed in C, it
supports bodies, joints, contacts and forces, the attributes
of which can be set by the user [39]. Once set up, a physical
world is integrated by the engine over time in user-defined
intervals. The SDK used here (1.0.5) is shipped with an
OpenGL and Direct3D renderer to visualize the scene.

The implementation of the bodies for this research is
characterized by the need to capture the fundamental fea-

IWhile other researchers such as Rodrigues [35] and de Garis [36)
did use evolutionary optimization in the context of bipedal walking,
to the authors’ knowledge, no rescarch has so far demonstrated the
applicability of evolved recurrent neurocontrollers for a real-time and
physically realistic biped simulation.



Composite Body | Length | Mass

Pelvis 0.5m 1 kg

Upper Leg 0.5 m 0.6 kg

Lower Leg 0.5m 0.6 kg
TABLE 1

‘WALKER DIMENSIONS AND MASSES. ME BODIES ARE COMBINED TO
META-BODIES

tures of a biped while limiting the body’s complexity and
degrees of freedom. Thus, the model used here consists
of two articulated legs connected by a link. Thirteen Ma-
thEngine bodies and eleven joints are used to implement
these structures, as illustrated in Figure 1 (Because each
leg comnsist of two composite bodies with two spheres and
one connecting link each, the present implementation uses
two bodies for each knee).

The degrees of freedom (DOF) of the joints are: hip joint:
2 DOF (pitch/roll) - knee: 1 DOF (pitch), giving a total
of 6 DOF.

Although important for real walking (for example in
birds or humans), feet and ankle joints are not imple-
mented. They impose additional DOF and would therefore
considerably increase the controller’s search space. In addi-
tion, the capabilities of MathEngine SDK 1.0.5 make realis-
tic foot-floor contact a computationally expensive endeav-
our (due to the need for multiple contact points). Sphere-
plane contacts (sphere radius: 8 ¢cm) provide an uncompli-
cated and fast alternative and are used instead. As will
become clear later this simplification does not come at a
noticeable cost in terms of the overall body dynamics.

A.2 Actuators

Muscle action is modelled by proportional derivative
(PD) controllers [40][5], which are essentially equivalent to
damped torsional springs. Their modus operandi is char-
acterized by the following equation:

T = ka(0a — 0) — kab (1)

with 7" being the torque force, ks the spring constant,
kg the damping constant, 6 the desired angle, and 6 the
current angle.

Rather than directly defining the strength of actuator
forces, the controller updates the natural orientation of the
PD controller (the desired angle of the limb). Eq. 1 is then
used to compute the force necessary to move the limb to
that position. The spring constant and damping value de-
termine the strength and the tendency to oscillate. Their
values therefore significantly influence the realism of move-
ments. By means of manual experimentation, values of
ks = 5 and kg = 4 were found to be appropriate and are
used for all actuators.

The PD approach largely eliminates the need to phys-
ically limit joint angles, since the same effect is achieved
by constraining the range of 6;. Table II shows the con-
straints used for the biped introduced earlier. In addition,

Joint Angle Radians | Degrees

knee front back | -1.4 to 0.0 | -89.1 to 0.0

hip lateral -0.8 to 0.8 | -50.9 to 50.9

hip front back | -1.3to 1.6 | -84.7 to 101.7
TABLE 11

ANGLE LIMITS OF BIPED JOINTS. VALUES WERE OBTAINED

HEURISTICALLY

Fig. 2. The recurrent neural network used to control bipedal walking.
Shaded nodes are motor neurones. Note that connections are bi-
directional and asymmetric.

PDs provide control at the mechanical level as they auto-
matically reduce any discrepancy between the current and
desired angle; whether this discrepancy has come about by
a controller-mediated updated value or by the dynamics of
the physical world is irrelevant. As a consequence, the ten-
dency of limbs, for example, to buckle under the mass of
the body is counteracted directly by the PDs, a feat which
would otherwise have to be accomplished by the neural
controller.

B. Controller Architecture

Legged locomotion is characterized by cyclic activity of
the limbs. In vertebrates and many invertebrates, the un-
derlying rhythmic neural activation patterns are created by
designated network structures called central pattern gener-
ators (CPGs) [41]. The defining feature of these is a high
degree of recurrency, which greatly biases the dynamics of
the system towards cyclic activation patterns.

In order to capitalize on comparable inherent dynamics,
the controller architecture used in this research is based on
a recurrent neural net, the structure of which is depicted
in Figure 2. (Similar networks have been used successfully
as CPGs by [42] and [32], in both cases for multilegged
robots.)

Each network consists of ten fully interconnected neu-
rons. Besides the weights, the behaviour of a node is gov-
erned by two other parameters, a time constant 7; and a
bias t;. At each iteration (time step: 0.02s), the activity



lateral
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Fig. 3. Motor connections between controller and walker. The hips
have 2 DOFs each (sagittal (i.e., front to back) and lateral), the
knees have 1 DOF each (front to back).
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Fig. 4. Encoding scheme. Chromosome index is shown in general
form (n: number of nodes) and for special case of n = 10 (in
brackets). Paramcters are encoded as real values. Ranges in
boxes represent upper and lower bounds of the respective param-
eter types.

of the jth neuron is computed according to equation 2,
TjAj = —Aj + ZwijOi (2)

with 7; being the time constant of the jth neuron, A;
its activity, O, the output from the 7th neuron, and w;; the
weight from the ith to the jth neuron.

The corresponding output is calculated as follows:

0; =1+ el®i—4i)) 1 (3)

where o is the bias of the jth neuron.

Nodes 1 to 6 are special in that they control the biped’s
actuators and they can therefore be considered to be motor
neurons. Their outputs (from 0.0 to 1.0) are scaled to map
to the angle limits listed in Table II. Figure 3 schematically
depicts the motor connections.

C. FEwolutionary Algorithm
C.1 Encoding Scheme and Population Parameters

The parameters to be optimized are weights, time con-
stants, and biases. The encoding scheme spatially sepa-
rates the three types in the chromosome (Figure 4).

Parameter values are coded as real numbers, with dif-
ferent ranges for each data type. Following [42] and [32],
these are [-16.0, 16.0] for the weights, [0.5, 5.0] for the time
constants, and [-4.0, 4.0] in the case of the biases. The
assignment of these ranges is simplified by the spatial sep-
aration of the types; similarly, different mutation rates and
sizes can be applied. While the former remains constant

Parameter o | Hag

weight 8 0 0

time constant | 1.5 | 2.75 | 0

bias 3 0 0
TABLE III

INITIALIZATION (I) AND MUTATION (M) DISTRIBUTIONS FOR
DIFFERENT PARAMETER TYPES. STANDARD DEVIATION AND SEPARATE
MEANS OF (GAUSSIAN DISTRIBUTION ARE SHOWN

throughout the chromosome, the differential implementa-
tion of the latter is necessary due to the varying parameter
value ranges. This is achieved by using Gaussian distribu-
tions. Table III shows the mutation sizes in form of stan-
dard deviations from mean 0. Values exceeding the allowed
range are clipped to the maximally permitted level. (This
is known to create disproportionate accumulations around
the clipping points [43], which were, however, found to be
negligible in this work.)

The mutation rate is calculated so as to cause on average
one change per chromosome. Thus, for larger networks an
accordingly lower rate per locus is applied. Together with
typically small mutation sizes (see Table IIT), this ensures
that the evolutionary search is local and gradual. Each
population consists of 50 individuals, and its individual
controllers are initialized with randomized values using the
initialization distributions of Table III. Rank-based selec-
tion is used for reproduction with a fittest fraction of 0.5
(this essentially means culling the bottom half of the pop-
ulation and replacing it with a copy of the top half [44]).
No crossover operations are applied both on theoretical (no
identifiable functional units in the genotype and phenotype
structure [45]) and empirical grounds (recent experimental
evidence on lack of efficiency of crossover in this problem
domain [25]).

C.2 Evaluation of Controllers

Despite the complexity of bipedal locomotion, it is pos-
sible to reduce the fitness function to the following two
components:

a) Mazimize distance travelled from origin

b) Do not lower centre of gravity below a certain height

The first objective implicitly includes the locomotion
component while at the same time rewarding walking in a
straight line rather than in circles (note that this would not
be true for Mazimize overall distance travelled). The sec-
ond goal combines two further factors: it penalizes falling
down as well as grotesque movements. (Much of the second
point is already prohibited by constraining the joint angles
in the physical model.) To improve efficiency evaluations
are terminated early if they are unpromising, i.e. as soon
as objective b) is not met. Hence, the fitness function for a
biped on an x-z walking plane can be expressed as follows:

W = /(xt — 20)2 + (2: — 20)2 (4)

with W being the fitness, = and z the planar compo-
nents of the walker position, and ¢ the time of the evalua-
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Fig. 5. Distribution of distances covered by unstable (a) and stable
(b) individuals. The top individuals of a total of 100 diffcrent
cvolutionary runs arc shown. Bin size: 1m.

tion termination. Evaluations are started with all neuron
activations set to zero and with the biped set to an up-
right stance. One run is performed per evaluation, with a
maximum possible length of 50 seconds each.

III. RESULTS

Populations of randomly initialized individuals were
evolved according to the fitness criteria outlined above. In
order to yield meaningful statistics, 100 evolutionary runs
were conducted, each consisting of 120 generations. Figure
5 shows the distribution of the distances covered by the top
individual of each run in the last generation. For reasons
of clarity, the distributions for unsuccessful (unstable) and
succesful (stable) controllers are shown separately.

Evaluations of individuals in distribution (a) were ter-
minated prematurely because their centre of gravity fell
below the specified height (see II.C.2). Individuals of dis-
tribution (b), on the other hand, did not fall over in the
given amount of time (50 seconds). Additional trials with
such controllers showed them to be capable of walking for
an indefinitely long period. They can therefore be regarded
as stable.

The fraction of evolutionary runs leading to stable walk-
ers was 10%, the average walking distance of which was
20.577m (0=1.083). This compares to an average walk-
ing distance of 7.878m (0=4.352) for the unstable walkers.
Figure 6 shows the fitness graph of a run resulting in such
a stable controller. The neural activation patterns of the
top controller in generation 120 are depicted in Figure 7.
Figure 8 contains a biped motion sequence of the evolved
controller. All controllers evolved in the course of the ex-
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Fig. 6. Fitness graph of representative stable controller evolution.
Top fitness (black) and average fitness (grey) are shown
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Fig. 8. Motion sequence of biped controlled by top individual of
generation 120 (Figure 6). Frame order from left to right, top to
bottom. See text for details
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Fig. 9. Preprocessing of two signal values resulting in final single
value s. The difference is divided by the sum of the two signal
strengths to give a stronger directional signal close to the sound
source. This also causes the signal to vanish with the biped facing
the sound source.

periments walked in a straight line, a direct result of the
fitness function (Eq. 4). Backwards walking controllers
were also evolved, albeit at a lower frequency than their
forward counterparts. The overall diversity of walkers was
large; gaits differed markedly from each other both in terms
of speed (as seen in Figure 5) and use of limbs. Knee move-
ments in particular showed considerable variation ranging
from fully swinging to constantly extended. Moreover, sev-
eral gaits displayed asymmetry, both in stride length and
limb use.

A. Efficiency of Evolutionary Runs

The fact that only 10% of evolutionary runs led to stable
walking appeared to indicate room for improvement. For
the majority of unsuccessful controllers, analysis showed
that the little distance they did cover was controlled by
the settling phase of the recurrent net. We therefore added
an additional fitness criterion that actively rewarded cyclic
activity. This markedly increased the proportion of suc-
cessful runs (to ca. 80%), but was not reflected in a pro-
portionate improvement of the overall time efficiciency (i.e.
successful controllers per processor cycle). The reason for
this lies in the fact that unsuccessful controller evaluations
are aborted early (see I1.C.2), thus taking up only limited
computational resources.

IV. INTEGRATING SENSORY INPUT

The controllers described in section III are purely rhythm
generating structures. Although sufficient to produce sta-
ble walking behaviour in a non-fluctuating environment,
they are not capable of dealing with rough terrain or re-
sponding to external stimuli. In order to achieve this, sen-
sory input must be integrated and the CPG activity mod-
ified accordingly. A simple set of experiments was carried
out to explore the potential to integrate basic sensory input
and will be described now.

o The biped is to walk towards the equivalent of a sound
source. It is equipped with two ‘ears’, the inputs of which
are preprocessed to give a single signal which becomes

Fig. 10. Each node of the RNN receives as input the preprocessed
signal value s.

stronger with decreasing distance from the source.? In ad-
dition the signal vanishes when the biped is directly facing
the source. (Figure 9). The signal is fed into the CPG as
depicted in Figure 10. The population is initialized uni-
formly with clones of the top individual from the run de-
picted in Figure 6. The CPG weights are clamped, but the
weights of the ten connections between the sensory node
and the RNN nodes are under the control of the EA. At
each evaluation, the biped starts from its default position
and is presented successively with two sound source loca-
tions. Because the task is to approach the signal as closely
as possible, the fitness function is the negative distance of
the walker to the sound source at the time of termination
(as caused by the conditions outlined in II1.C.2), or the nat-
ural end of the evaluation (after 50 seconds).

A. Results

Figure 11 depicts an evolutionary run with the popu-
lation seeded with individuals from the run depicted in
Figure 6. The graph is characterized by an initially strong
increase in fitness, but it fails to reach the maximum fitness
value of 0.0.

As illustrated in Figure 12, the controller succeeded in
walking towards the respective signal positions in the two
runs.

However, visual analysis of the walkers made clear that
the gait becomes unstable close to the respective signal
sources. This is particularly true for the second, right run.

To further investigate the ability of the sensors to mod-
ulate the net’s activity pattern as well as to examine the
reasons for the eventual instability, the neuronal activation
patterns of the two runs were recorded and are represented
in Figure 13.

The activation graphs indicate that the turning be-
haviour is at least partly achieved by modulating the ampli-

2This approximataion does not hold true when the biped is very
close to the sound source (i.e., when the distance to the source is
comparable with the distance between the agent’s cars).
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The population was sceded with individuals from the run de-
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Fig. 12. Trajectories of biped with sensory integration (two runs are
shown). Signals are located at [-3,-10] and [3,-10]. Run one: left.
Run two: right.
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Fig. 13. Necural activation graph of biped walking towards right (top)
and left (bottom) signal. Only activation of right hip sagittal (i.c.
front to back) neuron is shown. (Other neural activations did not
differ markedly from those of Figure 7.)

tude of the right hip sagittal motor neuron (which controls
the front to back movement), with a decrease resulting in
right (top graph) and an increase resulting in left (bottom
graph) turning. Additional experiments were carried out,
including evolution of the behaviour from scratch (i.e. un-

«. seeded populations), and evolution with seeded populations

but with evolvable CPG weights. However, neither of these
additional experimental series produced results superior to
those documented above.

V. DISCUSSION

Despite an extremely simple fitness function, the EA
employed in this research was capable of producing sta-
ble straight-line walkers without the use of proprioceptive
sensory input. Evolutionary algorithms rely on evolvable
systems, and the gradual nature of the fitness graphs (e.g.
Figure 6) indicates that the recurrent networks used here
can indeed be optimized in a continuous, gradual manner.
This notion has recently been corroborated by Rendel [47],
who has shown that the fitness landscape underlying the
current controller architectures is very smooth. For exam-
ple, it was possible to gradually modify the amplitude and
period of specific motor neuron cycles without affecting
those of others.

A further characteristic of the current set-up is the ability
to create a large diversity of gaits, both in terms of speed
and the use of limbs. Several gaits showed considerable sim-
ilarity to human walking, although this was not specifically
selected for. A potential way to further increase the realism
of the motion is to select for minimum energy expenditure
(a simple measure for this would be the average actuator
activity). It is expected that this fitness component will
particularly reward the use of knees. In the current imple-
mentation, several controllers walked with extended legs,
because this is concomitant with a large stride length. Hu-
mans, however, use the momentum of a forward-swinging
lower leg, which is energetically more favourable [17].

The evolved controllers were further characterized by
nonrepetitive activity cycles; instead, small fluctuations
were observed (Figure 7). Similar fluctuations have else-
where been found to contribute to the perceived realism of
simulated locomotive behaviour [48]. Real bipedal walking
contains fluctuations in successive cycles, and it is the lack
of these that the human eye picks upon in other artificial
walking bipeds.

The preliminary experiments on the integration of sen-
sory input indicate that CPG activity can indeed be mod-
ified by external stimuli in a meaningful way (Figure 13).
However, it is clear that the current sensory architecture is
insufficient to modulate the biped’s behaviour and retain
stability. For example, the simple pre-processing function
causes large, destabilising, fluctuations if the biped is close
to the signal source. This problem is further intesified by
the lack of active balancing mechanisms. The integration
of proprioceptive (e.g., limb positions and velocities) and
vestibular (balance) input is therefore a necessary next step
to achieve more interactive and robust behaviour.

A question that was not systematically explored is in how



far the network size affects the efficiency of the approach,
both in terms of search space as well as internal dynamics
of the net. With the current architecture, a linear increase
in the number of nodes leads to an quadratic increase of the
corresponding search space. A possible way to circumvent
this problem is to employ identical subnetworks for each
leg. Such a constellation seems to reflect the natural ar-
rangement of coupled oscillators more accurately [49] [50]
and has been successfully used elsewhere in the context of
multilegged locomotion [42] [51].

We would like to reiterate that the stable walkers ar-
rived at did not require proprioceptive input to achieve
stable walking in a straight line. This corroborates results
obtained elsewhere [52] that show that mechanical walk-
ers can attain stable straight-line walking on a planar sur-
face without active balance control. While those bipeds
were mechanically fine tuned to exploit gravity as an en-
ergy source, the implementation presented here relies on
evolutionary optimisation to fine tune active actuation.

We believe that the neuroevolutionary approach de-
scribed here brings about several major benefits: a) it is
fully automated, hence changes in morphology or actua-
tor implementations can be easily accommodated by re-
evolving the controllers, b) the diversity of locomotive be-
haviours is large because the system does not require a pri-
ort knowledge as to how to solve the control problem, and
¢) the evolved controllers are computationally very cheap
(typically taking up 0.5% of the processing power required
by graphics and physics).

VI. CONCLUSION

We have demonstrated the suitability of an evolution-
ary robotics approach to the problem of stable 3D bipedal
walking in simulation. The current implementation is ca-
pable of walking in a straight line on a planar surface with-
out the use of proprioceptive input. However, the use of
the latter will become necessary to stabilize the biped on
uneven terrain or in response to directional changes. The
neural controller employed in this research lends itself to
the incorporation of such additional input.

The quality of the results is expected to further improve
by a refined fitness function, as well as a shift towards cou-
pled neural oscillators instead of a single network. Further-
more, it is desirable to incorporate biomechanical knowl-
edge about human walking in order to make maximum use
of the passive dynamics of the bodies. These aspects are
currently being implemented.

In theory, the results obtained here are directly transfer-
able to embodied robots. In practice, however, there are
likely to be complications due to a possible lack of accuracy
of the physics engine. It remains to be seen whether this
‘reality gap’ can be crossed with appropriate techniques
such as noise envelopes [26].
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