
To appear in the Eurographics Rendering Workshop 2001

Opacity Shadow Maps
Tae-Yong Kim Ulrich Neumann

taeyongk@usc.edu uneumann@usc.edu
Computer Graphics and Immersive Technology Laboratory

Integrated Media Systems Center
University of Southern California

Abstract
Opacity shadow maps approximate light transmittance inside a complex volume with a
set of planar opacity maps. A volume made of standard primitives (points, lines, and
polygons) is sliced and rendered with graphics hardware to each opacity map that stores
alpha values instead of traditionally used depth values. The alpha values are sampled in
the maps enclosing each primitive point and interpolated for shadow computation. The
algorithm is memory efficient and extensively exploits existing graphics hardware. The
method is suited for generation of self-shadows in discontinuous volumes with explicit
geometry, such as foliage, fur, and hairs. Continuous volumes such as clouds and
smoke may also benefit from the approach.

1. Introduction
Rendering self-shadows inside volumetric objects (hair, fur, smoke, and cloud) is an
important but hard problem. Unlike solid objects, a dense volume made of many
small particles exhibits complex light propagation patterns. Each particle transmits
and scatters rather than fully blocks the incoming rays. The strong forward scattering
properties as well as the complex underlying geometry make the shadow generation
difficult. However, self-shadows are crucial to capture effects such as backlighting.
Two techniques are generally used for volumetric shadows1; shadow maps [10, 12,
13] and ray tracing [5, 6]. In traditional depth-based shadow maps (DBSM), the
scene is rendered from the light’s point of view and the depth values are stored. Each
point to be shadowed is projected to the light’s camera and the point’s depth is
checked against the depth in the shadow map. In ray tracing, a ray is shot from a
scene point to the light. If the ray intersects any particle on its way, shadows are
detected and accumulated. Despite its accuracy, a complete ray tracing of dense
volumetric objects can be prohibitive in terms of rendering time. In practice, shadow
maps are often used in conjunction with ray tracing for efficiency.
A good property of DBSM is that it can be accelerated with hardware by rendering
the scene and storing the depth buffer. However, severe aliasing artifacts can occur
with small semi-transparent objects. In a dense volume made of small primitives,
depths can vary radically over small changes in image space. The discrete nature of
depth sampling limits DBSM in handling such objects. Moreover, small particles are
often semi-transparent due to forward scattering. The binary decision in depth testing
inherently precludes such transparency. Thus, DBSM is unsuited for dense volumes.
Rendering volumetric objects requires a precise measure of a transmittance function
for any point in space. The transmittance τ(p) of a light to a point p can be written as

1 For other types of shadows, refer to [14] and survey sections in [10, 15] for more recent ones.

)exp()(Ω−=pτ , where ∫=Ω l dll0 ')'(ρ (1)
In (1), l is the optical depth from the light to the point, ρ is an extinction (or a density)
function along the path [1, 6, 10], and Ω is the opacity value at the point2.
In the deep shadow maps (DSM) [10], each pixel stores a piecewise linear
approximation of the transmittance function instead of a single depth, yielding more
precise shadow computation than DBSM. Despite the compactness and quality,
however, DSM requires a significant amount of data initialization time. When the
volume changes in time with regard to the light (e.g. hair animation or moving lights),
the generation cost can cancel out the computational benefit of the algorithm.

Opacity shadow maps (OSM) use a set of parallel opacity maps oriented
perpendicular to the light’s direction (Figure 1). By approximating the transmittance
function with discrete planar maps, opacity maps can be efficiently generated with
hardware. On each opacity map, the scene is rendered from the light’s point of view,
clipped by the map’s depth (Figure 2). Instead of storing depth values, each pixel
stores Ω, the line integral of densities along the path from the light to the pixel. The
opacity values from adjacent maps are sampled and interpolated during rendering.
Although OSM resembles volume rendering [3, 8], a major distinction is that OSM
uses a volume of explicit geometry primitives (points, lines, and polygons) instead of
a sampled scalar-field (voxels). Thus, it does not incur high memory requirements for
a full voxel data array. Also, OSM maintains the object space accuracy of the scene
model unlike volume rendering where precision is subject to sampling density.
The idea of opacity maps was exploited in feature films. For example, in the
movie ’Mission to Mars’, a software renderer was used to render the sand-vortex
sequence using an SGI origin machine with 16 processors [9]. These attempts did not
consider hardware acceleration and hence the rendering took a substantial amount of
time (about an hour per frame). To our knowledge, none of these techniques were
published.

2 For brevity, we use the term opacity to denote the accumulative extinction function. Note that
the term opacity is often used to denote the actual shadow. Thus, more precise term for Ω will
be opacity thickness as described in [11].

Fig. 1. The opacity function Ω(l) shown in a
solid gray curve is approximated by a set of
opacity maps.

A camera
positioned
at the light Ω(l)

l

l

Fig. 2. The volume is rendered on each
opacity map, clipped by the map’s depth
(Di). The transparent region illustrates
the clipped volume.

Di

2. Algorithm
Opacity shadow maps heavily rely on graphics hardware and operate on any bounded
volumes represented by standard primitives such as points, lines and polygons. (For
example, hairs can be represented as a cluster of lines.) The volume is sliced with a
set of opacity map planes perpendicular to the light’s direction. The scene is rendered
to the alpha buffer, clipped by each map’s depth. Each primitive contributes its
associated alpha value. 3 Each pixel in the map stores an alpha value that
approximates the opacity relative to the light at the pixel’s position. The opacity
values of adjacent maps are sampled and linearly interpolated at the position of each
shadow computation point, to be used in a shadowed shading calculation.

The pseudo code below uses the following notation. P is the set of all the shadow
computation sample points (or simply shadow samples). N is the number of maps and
M is the number of shadow samples. Di is the distance from the opacity map plane to
the light (1 ≤ i ≤ N). Pi is a set of shadow samples that reside between Di and Di-1. pj
is jth shadow sample (1 ≤ j ≤ M). Depth(p) returns a distance from p to the light.
Ω(pj) stores the opacity at pj. τ(pj) is the transmittance at pj and Φ(pj) is the computed
shadow. Bprev and Bcurrent are the previous and current opacity map buffers.
Pseudo Code
1. D0= Min (Depth(pj)) for all pj in P (1 ≤ j ≤ M)
2. for (1 ≤ i ≤ N) (Loop 1)
3. Determine the opacity map’s depth Di from the light (Figure 3).
4. for each shadow sample point pj in P (1 ≤ j ≤ M) (Loop 2)
5. Find i such that Di-1≤ Depth(pj) < Di
6. Add the point pj to Pi.
7. Clear the alpha buffer and the opacity maps Bprev, Bcurrent.
8. for (1 ≤ i ≤ N) (Loop 3)
9. Swap Bprev and Bcurrent.
10. Render the scene clipping it with Di-1 and Di.
11. Read back the alpha buffer to Bcurrent.
12. for each shadow sample point pk in Pi (Loop 4)
13. Ω prev = sample(Bprev , pk)
14. Ω current = sample(Bcurrent , pk)
15. Ω = interpolate (Depth(pk), Di-1, Di, Ω prev, Ω current)
16. τ(pk) = e-κΩ
17. Φ(pk) = 1.0 - τ(pk)

In loop 1, the depth of each map is determined. Uniform slice spacing is reasonable
for evenly distributed volumes (Figure 3a). When the structure of the volume is
known, adaptive slicing (1D BSP) can be used such that tighter spacing is used in
denser or more detailed regions (Figure 3b). Considering that regions farther from the
light have ever-decreasing variations of shadows, a nonlinear partition conforms to
perceptual sensitivity analogous to gamma correction (Figure 3c).

3 The alpha value is a user-controllable parameter that depends on the size (thickness) and the
optical property (albedo) of the primitive. It also depends on the resolution of the opacity maps.

Prior to shadow rendering, shadow samples are produced for the primitives. In
volumetric clusters, the primitives tend to be very small and thus the end points of
lines and the vertices of polygons often suffice. More samples can be taken if needed.
When many samples are required for each primitive, it may be useful to pre-compute
the visibility and use only the visible points as shadow samples as in [15]. Loop 2
prepares a list of shadow samples that belong to each buffer. The procedure makes
the shadow computation time linear in the number of samples.

Each pixel in the map stores the opacity value, which is a summation that produces
the integral term Ω in equation (1). Thus each primitive can be rendered antialiased
with hardware support in any order4. The alpha buffer is accumulated each time the
volume is drawn with the OpenGL blend mode glBlendFunc(GL_ONE,GL_ONE).
The depth buffer is disabled. Clipping in line 10 ensures correct contribution of alpha
values from the primitives and culls most primitives, speeding up the algorithm.

As loop 3 and 4 use only two opacity map buffers at a time, the memory requirement
is independent of the total number of opacity maps computed. In loop 4, the shadow
is computed only once for each sample. So, the amortized cost of the algorithm is
linear in the number of samples. The overall complexity is O(NM) since the scene is
rendered for each map, but the rendering cost is low with hardware acceleration.

The sample function in loop 4 can be any standard pixel sampling function such as a
box filter, or higher-order filters such as a Bartlett filter and a Gaussian filter [4]. We
use a 3x3 averaging kernel. Such filtering is possible because alpha values are stored
instead of depths. The sampled opacity values Ω prev, Ω current are linearly interpolated
for each point pk

5. A higher order interpolation may be used. For example, four
buffers will be needed for a cubic-spline interpolation.

A volume turns opaque as the opacity Ω reaches infinity. The quantization in the
alpha channel limits the maximum amount of opacity that a pixel can represent. A
constant κ in line 16 controls the scaling of opacity values such that e-κ = 2-d, where d
is the number of bits per pixel (for example, κ is about 5.56 for 8 bit alpha buffer).
Thus, an opacity value of 1.0 represents a complete opaqueness. The transmittance
function for an opaque surface is a step function [10]. Although step functions are

4 The order can be arbitrary due to the commutative nature of addition (or integral).
5)-/())((,)0.1()(p 1-ii1prevcurrentk DDDpDepthttt ik −−=Ω−+Ω=Ω

Fig. 3. Choice of slicing schemes. (a) Uniform slicing (b) Density based
slicing (1D BSP) (c) Non-uniform slicing similar to Gamma Correction [4].

approximated with a large number of maps, the integration of opaque objects is more
efficiently achieved by adding a traditional depth buffer shadow map (Figure 5).

3. Results

The performance of the algorithm is tested with a hair model of about 340,000 lines
(Plate 1). Opacity maps are created at a resolution of 512 x 512 with uniform slicing
scheme. The rendering time is linear in the number of the maps (Figure 4). Loop 3
and 4 account for most of the calculation time. Other steps such as the bounding box
calculation (0.09 sec), assigning shadow samples to the maps (2.21 sec), and object
shadow map generation (0.24 sec) use constant time. The slope of the graph in Figure
4 indicates the hardware’s performance. About 4 opacity maps per second are
computed using an SGI 540 NT Workstation with a 550Mhz Pentium CPU that can
render about five million triangles per second. Figure 5 shows selected opacity maps.
Plate 2 shows the images of a hair model of about 500,000 lines at various lighting
conditions. Each hair strand is shaded using a lighting model in [7].

4. Discussion and Conclusion
Opacity shadow maps (OSM) provide a fast and memory efficient solution to
rendering time-varying volumetric self-shadows without requiring any expensive
preprocessing. Well suited for discontinuous volumes with explicit geometry (hair,
fur, grass, and particle systems), it may be also used for continuous volumes (clouds
and smoke) that are often sampled in voxel grids or implicitly defined. For example,
clouds can be represented with independently moving point samples. Smoke can be

Fig. 5. Opacity shadow maps. Each ith map is shown from left to right, top to bottom (i =
1,6,14,26,40,52,60). The last figure shows a depth map for the opaque head and torso.

Fig. 4. Rendering time as a function of the number of maps

0

2 0

4 0

6 0

8 0

1 0 0

6 4 0 8 2 1 2 0 1 6 1 1 9 9 2 4 0 2 8 0 3 1 9
N u m b e r o f M a p s

R
en

de
rin

g
Ti

m
e

represented with a set of lines that vary their thickness and length in time.
A tradeoff between the speed and the quality is achieved by varying the number of
maps. In complex geometry, the self-shadowing procedure can be viewed as a
convolution of two high frequency signals, one from the geometry, and the other from
the shadows. The study of the human visual system indicates that humans do not
easily separate one signal from such mixed signals [2]. OSM mimics a low-pass filter
for shadow signals. Due to the perceptual effects of visual masking, the degradation
in perceived quality may be lower than quantitative measures might predict (Plate 3).
The opacity map farthest from the light can be used to compute shadows cast from the
volume to other scene objects. A scene with many volumes can be spatially
partitioned and the opacity maps can be composited. Instead of drawing every
volume, the line 7 of the algorithm can be rewritten as ‘Load the stored alpha buffer
for the volumes closer to the light’. The partitioning scheme can improve the
performance and reduce memory requirements for the scene graph. The simplicity of
OSM may also allow further acceleration with multi-texture or 3D-texture hardware.
Acknowledgement
This work was funded by DARPA and the Annenberg Center at USC. Funding and research
facilities were also provided from the NSF through its ERC funding of the Integrated Media
Systems Center. The authors thank anonymous reviewers for many valuable comments.

References
[1] J. F. BLINN, Light reflection functions for simulation of clouds and dusty surfaces,

SIGGRAPH Proceedings, Vol. 16, pp. 21-29, 1982.
[2] M. BOLIN AND G. W. MEYER, A frequency based ray tracer, SIGGRAPH Proceedings,

Vol. 29, pp. 409-418, 1995.
[3] R. DREBIN, L. CARPENTER, AND P. HANRAHAN, Volume rendering, SIGGRAPH

Proceedings, Vol. 22, pp. 65 – 74, 1988.
[4] J. FOLEY, A. VAN DAM, S. K. FEINER, AND J. F. HUGHES, Computer graphics, principles

and practice, Second Edition, Addison-Wesley, July, 1995.
[5] A. S. GLASSNER, An introduction to ray tracing, Academic Press, 1993
[6] J. KAJIYA AND B. P. HERZEN, Ray tracing volume densities, SIGGRAPH Proceedings,

Vol. 18, pp. 165-174, 1984.
[7] J. KAJIYA AND T. KAY, Rendering fur with three dimensional textures, SIGGRAPH

Proceedings, Vol. 23, pp. 271-280, 1989.
[8] M. LEVOY, Display of surfaces from volume data, Ph.D. thesis, University of North

Carolina at Chapel Hill, 1989.
[9] J. P. LEWIS, Disney TSL, Personal communication.
[10] T. LOKOVIC AND E. VEACH, Deep shadow maps, SIGGRAPH Proceedings, Vol. 34, pp.

385-392, 2000.
[11] S. N. PATTANAIK AND S. P. MUDUR, Computation of global illumination in a participating

medium by Monte Carlo simulation, The Journal of Visualization and Computer
Animation, Vol. 4(3), pp. 133-152, John Wiley & sons, 1993.

[12] W. T. REEVES, D. H. SALESIN, AND R. L. COOK, Rendering antialiased shadows with
depth maps, SIGGRAPH Proceedings, Vol. 21, pp. 283-291, 1987.

[13] L. WILLIAMS, Casting curved shadows on curved surfaces, SIGGRAPH Proceedings, Vol.
12, pp. 270-274, August, 1978.

[14] A. WOO, P. POULIN, AND A. FOURNIER, A survey of shadow algorithms, IEEE Computer
Graphics and Applications, 10(6), pp. 13-32, November, 1990.

[15] H. ZHANG, Forward shadow mapping, Rendering Techniques ‘98, Vol. 9, pp. 131-138,
Springer-Verlag, 1998.

(a) (b) (c)

 Plate 1: (a): Hair rendering without self-shadows. (b) Each opacity map is illustrated as a
green rectangle. (c) Shadowed hair model (about 340,000 lines).

(b)

(c)

(a)

(d)

Plate 2: (a) A hair model lit by three lights (N = 80). (b) Different view of the model of
about 500,000 lines (c) The opaque head and torso is shown. (d) Backlighting effect.

N=6 N=10 N=40 N=500

Plate 3: A fur model rendered with 500 maps (left). One light is positioned at the left side of
the image. Close-up views are shown on the right side, upper rows for a bright area (blue
rectangle) and lower rows for a dark area (yellow rectangle). Note that artifacts are visible at
brighter regions, but only with relatively small number of maps (N = 6).

